Randomness Test , over a General Space

نویسنده

  • PETER GÁCS
چکیده

The algorithmic theory of randomness is well developed when the underlying space is the set of finite or infinite sequences and the underlying probability distribution is the uniform distribution or a computable distribution. These restrictions seem artificial. Some progress has been made to extend the theory to arbitrary Bernoulli distributions (by Martin-Löf), and to arbitrary distributions (by Levin). We recall the main ideas and problems of Levin's theory, and report further progress in the same framework. The issues are the following: – Allow non-compact spaces (like the space of continuous functions, underlying the Brown-ian motion). – The uniform test (deficiency of randomness) dP (x) (depending both on the outcome x and the measure P) should be defined in a general and natural way. – See which of the old results survive: existence of universal tests, conservation of ran-domness, expression of tests in terms of description complexity, existence of a universal measure, expression of mutual information as " deficiency of independence ". – The negative of the new randomness test is shown to be a generalization of complexity in continuous spaces; we show that the addition theorem survives. The paper's main contribution is introducing an appropriate framework for studying these questions and related ones (like statistics for a general family of distributions).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computability of probability measures and Martin-Lof randomness over metric spaces

In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any computable metric space with a computable probability measure is isomorphic to the Cantor space in a computable and measure-theoretic sense. We show th...

متن کامل

Uniform test of algorithmic randomness over a general space

The algorithmic theory of randomness is well developed when the underlying space is the set of finite or infinite sequences and the underlying probability distribution is the uniform distribution or a computable distribution. These restrictions seem artificial. Some progress has been made to extend the theory to arbitrary Bernoulli distributions (by Martin-Löf), and to arbitrary distributions (...

متن کامل

Algorithmic randomness over general spaces

Algorithmic randomness over general spaces has been considered such as an effective topological space and a computable metric space. In this paper we generalize algorithmic randomness to a computable topological space. First we define computable measures on a computable topological space and study computability of the evaluation. Next we define randomnesses via three approaches. Measure randomn...

متن کامل

A Randomness Test for Stable Data

In this paper, we propose a new method for checking randomness of non-Gaussian stable data based on a characterization result. This method is more sensitive with respect to non-random data compared to the well-known non-parametric randomness tests.

متن کامل

Lecture 17: Randomness Extractors

This lecture is about randomness extractors. Extractors are functions that map samples from a non-uniform distribution to samples that are close to being uniformly distributed. The length of the output will in general be smaller than the length of the input of the extractor. The input distribution of the extractor is called the source. A source is a random variable which maps text values to bit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003